Discrete Tomography by Continuous Multilabeling Subject to Projection Constraints
نویسندگان
چکیده
We present a non-convex variational approach to non-binary discrete tomography which combines non-local projection constraints with a continuous convex relaxation of the multilabeling problem. Minimizing this non-convex energy is achieved by a fixed point iteration which amounts to solving a sequence of convex problems, with guaranteed convergence to a critical point. A competitive numerical evaluation using standard test-datasets demonstrates a significantly improved reconstruction quality for noisy measurements from a small number of projections.
منابع مشابه
DISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملThe Discrete Diffraction Transform
In this paper we define a discrete analogue of the continuous diffracted projection. we define a discrete diffracted transform (DDT) as a collection of the discrete diffracted projections taken at specific set of angles along specific set of lines. We define ‘discrete diffracted projection’ to be a discrete transform that is similar in its properties to the continuous diffracted projection. We ...
متن کاملPERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS
Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...
متن کاملMULTI-OBJECTIVE OPTIMIZATION WITH PREEMPTIVE PRIORITY SUBJECT TO FUZZY RELATION EQUATION CONSTRAINTS
This paper studies a new multi-objective fuzzy optimization prob- lem. The objective function of this study has dierent levels. Therefore, a suitable optimized solution for this problem would be an optimized solution with preemptive priority. Since, the feasible domain is non-convex; the tra- ditional methods cannot be applied. We study this problem and determine some special structures related...
متن کاملGradient Flows on a Riemannian Submanifold for Discrete Tomography
We present a smooth geometric approach to discrete tomography that jointly performs tomographic reconstruction and label assignment. The flow evolves on a submanifold equipped with a Hessian Riemannian metric and properly takes into account given projection constraints. The metric naturally extends the Fisher-Rao metric from labeling problems with directly observed data to the inverse problem o...
متن کامل